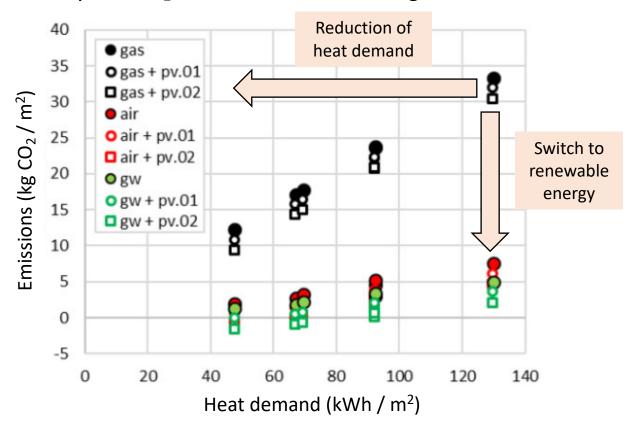

Innovation project supported by

Swiss Confederation

Innosuisse – Swiss Innovation Agency


Design and technical improvement of heat-pump systems for existing multifamily buildings

Pierre Hollmuller, Omar Montero, Pauline Brischoux University of Geneva

Overall challenge

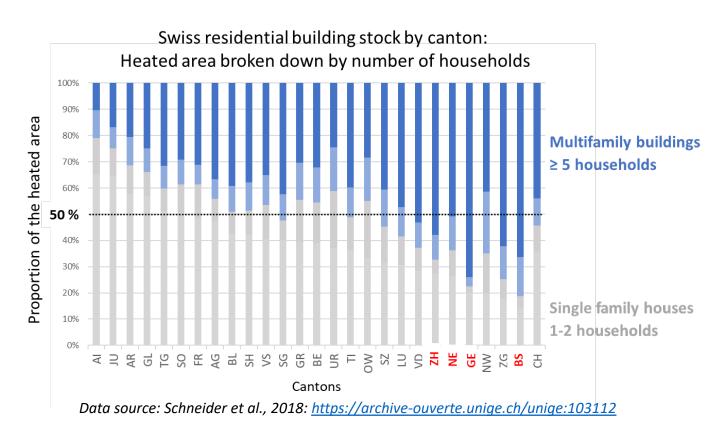
Pathways for CO₂ reduction of the Building stock

Romano et al, 2020: https://archive-ouverte.unige.ch/unige:136512

Overall challenge:

- Reduction of heat demand → retrofit of building envelope
- Switch to renewable energy → change of heat production system

Challenge of Multifamily buildings (MFB)


MFB, share of heated area:

• CH: 45%

Urban cantons: 60 – 75%

Specific challenges:

- Dense urban areas → air as only HP source
- HP systems > 50kW not standardized
- Owner-Tenant dilemma → contracting as a possible solution

Challenges of Building retrofit

Retrofit rate of multi-family buildings

Construction	Retrofit rate	fraction by energy class improvement: r_{Ei}/r_{E} (%)					Efficient retrofit rate		Mean savings	
Period	$r_{\scriptscriptstyle E}$ $r_{\scriptscriptstyle A}$	>2	2	1	0	-1	≤-2	r_{E2+}	$r_{\rm E1+}$	MJ m ⁻² y ⁻¹
Before 1919	1.7% 1.8%	0.6%	5.3%	26.2%	58.2%	8.8%	0.9%	0.1%	0.5%	45.9
1919-1945	2.0% 2.0%	0.0%	4.6%	23.2%	62.4%	9.3%	0.5%	0.1%	0.6%	39.4
1946-1960	1.7% 2.0%	5.4%	3.5%	27.3%	56.5%	7.3%	0.0%	0.2%	0.6%	48.9
1961-1970	2.4% 2.6%	8.1%	8.1%	29.1%	50.1%	4.2%	0.2%	0.4%	1.1%	91.1
1971-1980	1.3% 1.5%	3.3%	3.3%	31.3%	48.9%	12.6%	0.5%	0.1%	0.5%	51.4
1981-1990	0.4% 0.6%	0.0%	2.5%	37.5%	37.5%	22.5%	0.0%	0.0%	0.2%	34.5
Total	1.7% 1.9%	3.9%	5.3%	27.8%	54.4%	8.2%	0.4%	0.2%	0.6%	67.9

Grandjean et al., 2021: https://archive-ouverte.uniqe.ch/uniqe:156968

Challenges:

- Cost / Benefit
- Owner-Tenant dilemma
- Administrative complexity
- Heritage protection
- Lifecycle Timing
- Availability of skills
- Constructive, architectural and user issues
 Performance gap

• ...

Challenges of Fuel switch

Challenges (for MF-buildings):

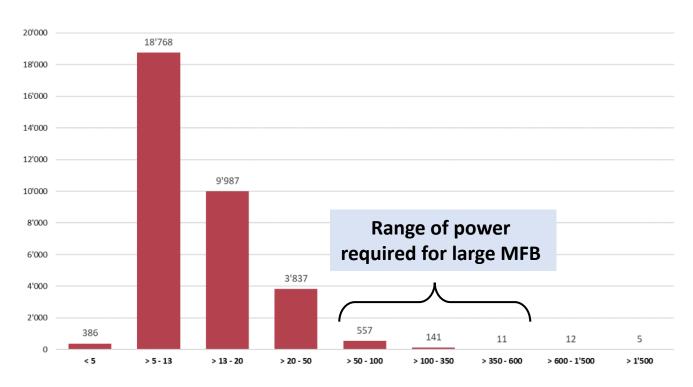
- Reduced space for heat storage
- HP weight / roof structure
- Noise (air-source HP)
- Integration in existing system
- Evolution of demand (future retrofit)
- Lack of case studies, factsheets & training programs

Weight limitation

Limited space

Integration in existing system

Future retrofit / demand reduction



Challenges of Fuel switch

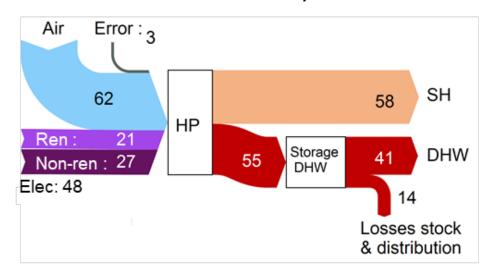
HP sales in Switzerland (2021) according to power capacity (kW)

Source: Groupement professionnel Suisse pour les pompes à chaleur (GSP). Statistiques 2021

- Lack of standardized schemes → oversized, ill-integrated systems
- Lack of robust control strategies (in particular for bivalent systems) → underperformance

Monovalent system – Large industrial HP units

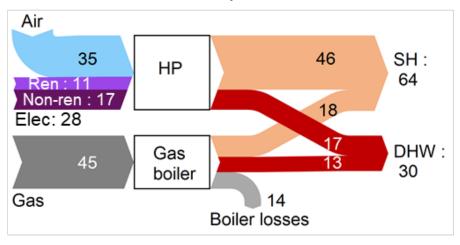
Bivalent system – Small standardized HP units



		Monovalent	Hybrid	
	Type of building	Residential	Mixed (residential + commercial)	
	Construction year	1972	1992	
	Heated floor area	4'047 m²	7'563 m²	
	Old heating system	Oil boiler (319 kWth)	Gas boilers (2 x 200 \underline{kW}_{th})	
	New heating system ¹	2 industrial ASHPs	6 ASHPs (6 x 34 <u>kW</u> th) +	
- /		$(2 \times 156 \text{ kW}_{th})$	existing gas boiler (200 <u>kW</u> th)	
	SH demand (measured)	58 <u>kWhth</u> /m²/ <u>yr</u>	64 kWhth/m²/yr	
	SH demand (normalized) ²	77 <u>kWh</u> th/m²/ <u>yr</u>	72 kWhth/m²/yr	
	DHW demand ³	55 kWhth/m²/yr	30 kWhth/m²/yr	
23	Monitoring period	July 2018 – June 2020	July 2017 – June 2019	

22/08/2023

Monovalent HP system



SPF_{sys} : 2.29

HP share: 100%

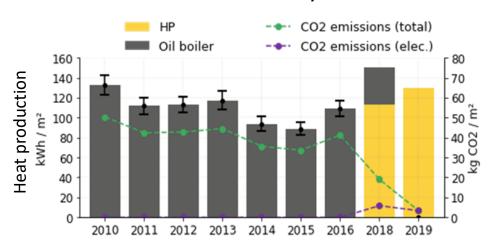
Ren. fraction: 75%

Bivalent HP system

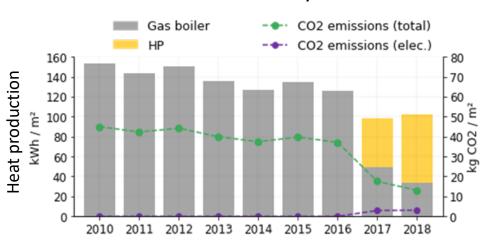
SPF_{sys} : 2.28

HP share: 67%

Ren. Fraction: 43%


Renewable electricity fraction based on hourly Swiss electricity mix (Romano, 2018, https://archive-ouverte.unige.ch/unige:131622)

Montero et al. (2022)

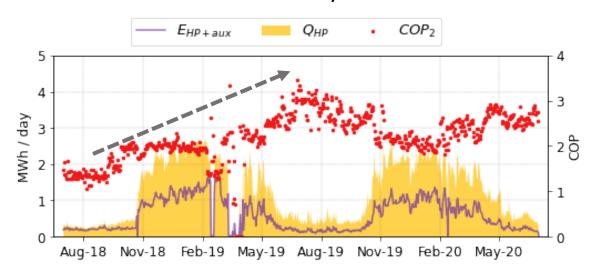

https://archive-ouverte.unige.ch/unige:162052

Monovalent HP system

Bivalent HP system

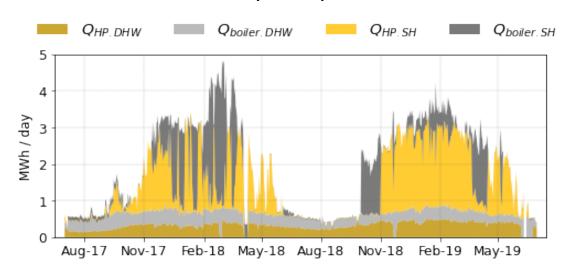
Emission savings: 92%

Montero et al. (2022)
https://archive-ouverte.unige.ch/unige:162052


Emission savings: 68%

CO₂ content of electricity based on hourly Swiss electricity mix (Romano, 2018, https://archive-ouverte.unige.ch/unige:131622)

Monovalent system



Increase of the COP from 1.5 to 3.4

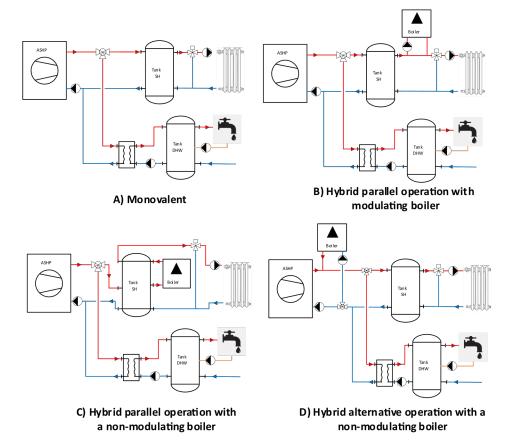
Identified issues:

- (i) Circulation pumps ON (24h/24)
- (ii) Heating curve not taken into account
- (iii) HP oversized (+146 %)

Hybrid system

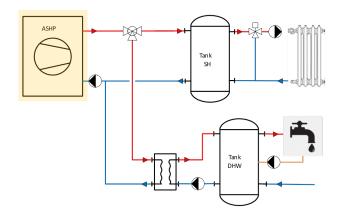
Increase of the annual HP fraction from 50% to 67%

Identified issues:


- (i) HP shutdowns → high return temperatures from boiler
- (ii) Limited master/slave control
- (iii) Significant heat losses in the pipes

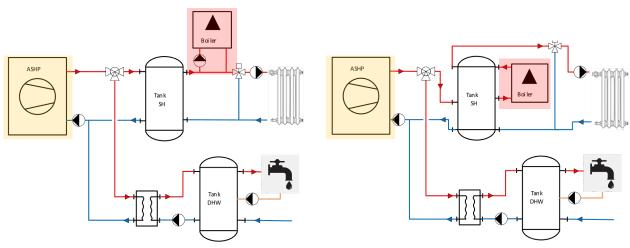
Montero et al. (2022). https://archive-ouverte.unige.ch/unige:162052

HP concepts based on:

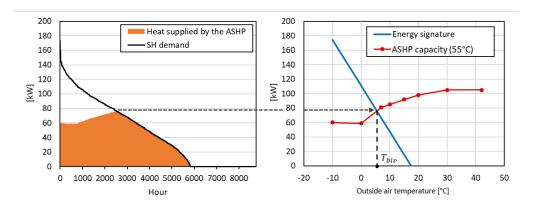

- · Discussions with experts in the field
- Long-term in-situ monitoring of pilot projects
- Model validation with in-situ monitoring (TRNSYS)
- Normalization to reference conditions
 - Climate, space heating and DHW demand
- Sensitivity analysis
 - Levels of heat demand and heat pump capacity
- Conclusions and recommendations

Montero et al., 2023: https://archive-ouverte.unige.ch/unige:169365

Monovalent system


- HP to cover 100% of the demand (SH and DHW)
- Easier to control, but requires measures of noise reduction, rooftop static and extra height construction limits
- Cost → More HP capacity than hybrid systems
- Risk of HP oversizing

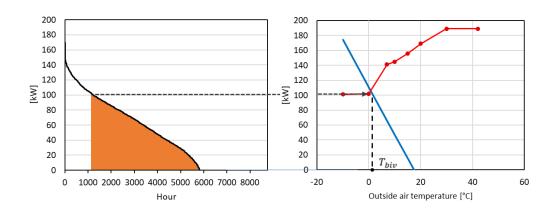
Hybrid parallel system


Modulating boiler

Non-modulating boiler

- **Economic choice** (HP to over 80% of the demand → 50% of the load)
- Transitional solution, while awaiting an envelope renovation
- More complex (hydraulic and control) than monovalent system
- HP supplies 100% of the DHW production

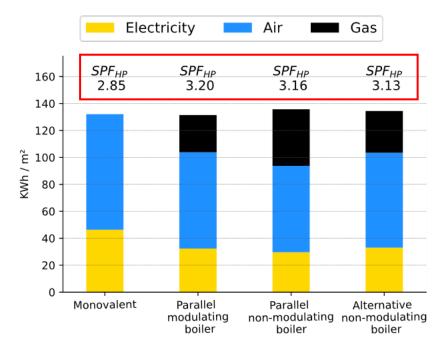
Operation mode

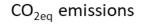


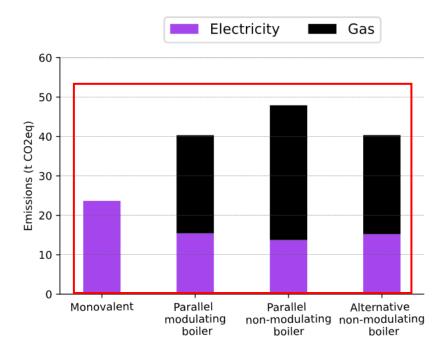
Hybrid alternative system

with non-modulating boiler

Operation mode




- Existing boiler will be disconnected (eg. old boiler with low modulation)
- Boiler removal with minor hydronic modifications
- HP supply 100% of the DHW production



Sensitivity to hydraulic scheme (reference heat demand + sizing)

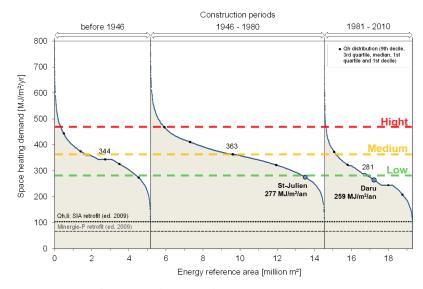
Energy mix and performance

Heat demand and climate:

• SH: 101 kWh/m2

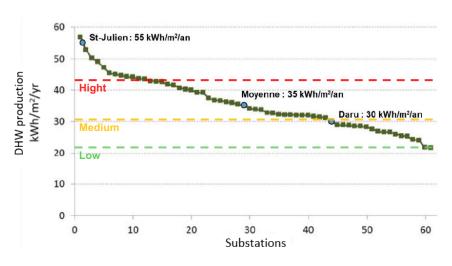
DHW: 35 L/day.pers

Climate: SIA 2028 average


Heated area: 4047 m2

	Mono	Parallel	Parallel	Alternat.	
		modulating	non-mod.	non-mod.	
HP (kW)	274	88	88	137	
Boiler (kW)		95	95	189	

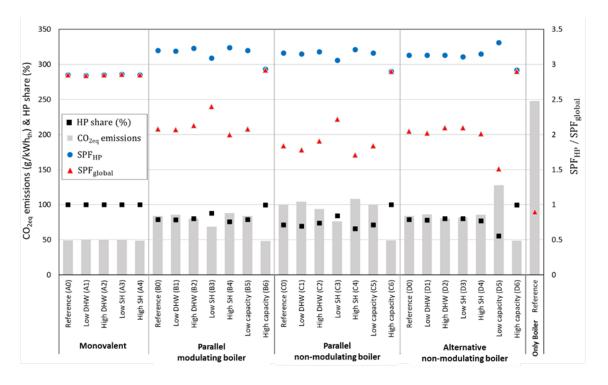
Montero et al., 2023: https://archive-ouverte.unige.ch/unige:169365


Variation of SH and DHW demand (low/medium/high)

SH demand of Geneva's multifamily building stock sorted in three construction periods Khoury, Jad. 2014. https://doi.org/10.13097/archive-ouverte/unige:48085.

Variation of HP capacity (hybrid systems)

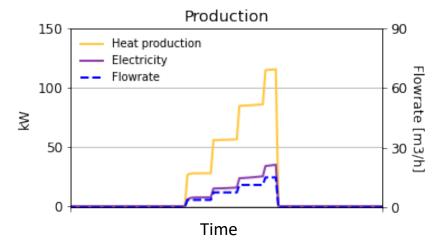
HP capacity: 30%, 40-60% and 80% of the maximum hourly SH demand

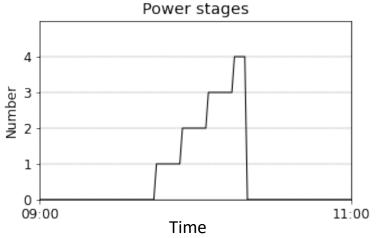


Distribution of the DHW demand of residential buildings (one million m2 of heated area). Quiquerez, Loic. 2017. https://archive-ouverte.unige.ch/unige:91218.

Results (26 cases = 4 reference cases + 22 variants)

		Mono. scenarios	Hybrid scenarios	Boiler only
\Rightarrow	SPF_{HP}	2.85	3.06 - 3.31	-
	SPF_{global}	2.85	1.52 - 2.40	0.9
	HP fraction	100 %	56% - 88%.	-
\Rightarrow	Emissions gCO _{2eq} /kWh _{th}	49	68 -127	247




Montero et al., 2023: https://archive-ouverte.unige.ch/unige:169365

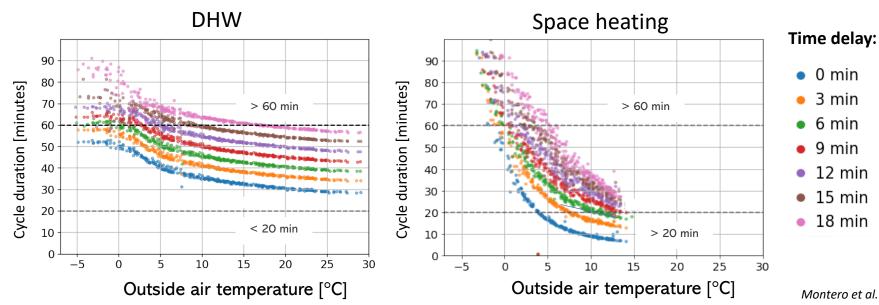
HP control

Cascade: Successive activation of HPs or compressors

Issue:

- Limitations of cascade control of HPs available on the market (> 50 kWth)
- Good cascade control guarantees machine lifetime, performance and user comfort

Examples (P+D projects)



HP control

Sensitivity analysis on time delay

Montero et al. (2023): <u>https://archive-ouverte.uniqe.ch/uniqe:169458</u>

Time delay of the cascade should be adjusted to:

- Heating season (especially for space heating)
- Production mode (space heating or DHW)
- Characteristics of the installation (tank volume, HP capacity, etc.)

Conclusions

P&D projects:

- Even in non-retrofitted buildings, air-source HP systems can supply the required temperature levels + cover the entire heat demand.
- Major CO₂ savings (92% and 68%) and increased renewable energy share (75% and 43%).
- Specificities of HP systems as compared to fossil fuel boilers → implementation requires adequate professional training and careful execution.

Sensitivity analysis:

- Energy mix and CO2 emissions → consider the overall system performance (HP and boiler).
- Monovalent systems lead to lower emissions than hybrid systems.
- However, emissions of hybrid systems remain 2.3 to 3.5 times lower than for a fossil boiler → transitional solution to before retrofitting of building.
- Monovalent HP capacity 2 to 3 times higher than hybrid HP \rightarrow cost issue (in particular for transitional solution).

Thank you

Funding & Partners

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

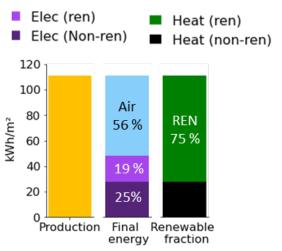
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

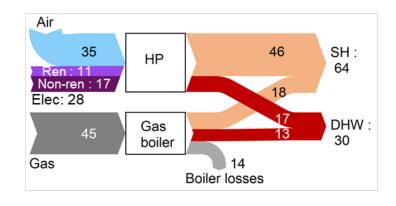
Innosuisse - Swiss Innovation Agency

Backup slides

Abstract

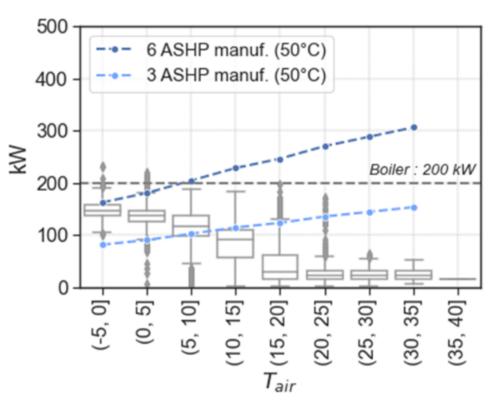


Switching from fossil boilers to heat pumps (HP) can drastically reduce CO2-emissions of the Swiss building stock. Such can be achieved with or without combined envelope retrofit, which will stretch over several decades. While the potential market is huge, many challenges and obstacles need to be solved, in particular for existing multifamily buildings and related large capacity air-source HPs (> 50 kW). Analysis of case studies in actual condition of use, complemented by numerical simulation, allow to highlight these challenges and indicate potential optimization in terms of sizing, system integration, control strategies, as well as industrial developments.



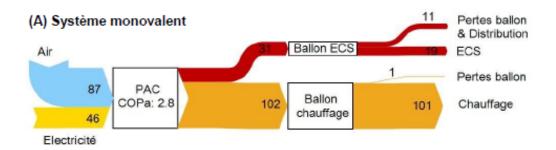

Monovalent system

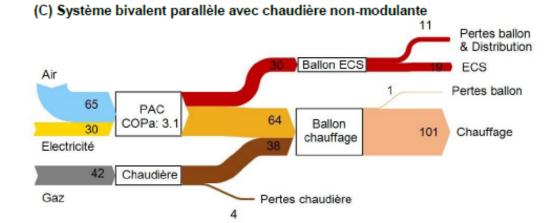

Bivalent system

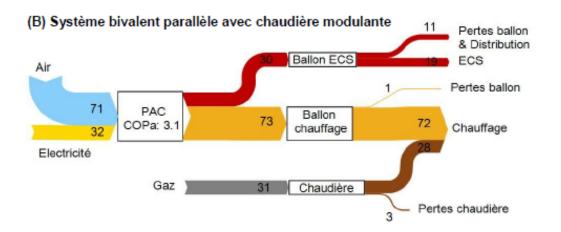


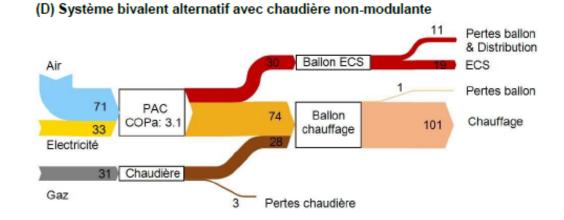
Monovalent system

Hybrid system


Reference cases / Design parameters


	Monovalent	Parallel modulating boiler	Parallel non-modulating boiler	Alternative non-modulating boiler
HP capacity required for SH*	250	78	78	137
HP capacity required for DHW*	84	84	84	84
Mode with the highest capacity requirements	SH	DHW	DHW	SH
HP capacity retained [kWth]*	274	88	88	137
Boiler capacity [kWth]	-	95	95	189
Bivalence temperature [°C]	-	4.5	4.5	0.5
Volume of SH tank [m³]	2.2	2.9	2.9	2.2
Volume of DHW tank [m³]	1.9	1.9	1.9	1.9


^{*} HP capacities for 7 °C at the evaporator inlet and 45 °C at the condenser outlet



Reference cases

